You're viewing version 3.1 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.
Complex conditionals
In ingest pipelines, the if parameter in processors can evaluate complex conditions using Painless scripts. These conditionals help fine-tune document processing, allowing advanced logic such as type checking, regular expressions, and combining multiple criteria.
Multiple condition checks
You can combine logical operators like && (and), || (or), and ! (not) to construct more complex conditions. The following pipeline tags documents as spam and drops them if they contain an error_code higher than 1000:
PUT _ingest/pipeline/spammy_error_handler
{
  "processors": [
    {
      "set": {
        "field": "tags",
        "value": ["spam"],
        "if": "ctx.message != null && ctx.message.contains('OutOfMemoryError')"
      }
    },
    {
      "drop": {
        "if": "ctx.tags != null && ctx.tags.contains('spam') && ctx.error_code != null && ctx.error_code > 1000"
      }
    }
  ]
}
You can test the pipeline using the following _simulate request:
POST _ingest/pipeline/spammy_error_handler/_simulate
{
  "docs": [
    { "_source": { "message": "OutOfMemoryError occurred", "error_code": 1200 } },
    { "_source": { "message": "OutOfMemoryError occurred", "error_code": 800 } },
    { "_source": { "message": "All good", "error_code": 200 } }
  ]
}
The first document is dropped because it contains an OutOfMemoryError string and an error_code higher than 1000:
{
  "docs": [
    null,
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "error_code": 800,
          "message": "OutOfMemoryError occurred",
          "tags": [
            "spam"
          ]
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:20:10.704359884Z"
        }
      }
    },
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "error_code": 200,
          "message": "All good"
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:20:10.704369801Z"
        }
      }
    }
  ]
}
Type-safe evaluations
Use instanceof to ensure you’re working with the right data types before performing operations. The following pipeline is configured to add a processed field set to true only if message is of type String and longer than 10 characters:
PUT _ingest/pipeline/string_message_check
{
  "processors": [
    {
      "set": {
        "field": "processed",
        "value": true,
        "if": "ctx.message != null && ctx.message instanceof String && ctx.message.length() > 10"
      }
    }
  ]
}
Test the pipeline using the following _simulate request:
POST _ingest/pipeline/string_message_check/_simulate
{
  "docs": [
    { "_source": { "message": "short" } },
    { "_source": { "message": "This is a longer message" } },
    { "_source": { "message": 1234567890 } }
  ]
}
Only the second document has a new field added:
{
  "docs": [
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "message": "short"
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:28:14.040115261Z"
        }
      }
    },
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "processed": true,
          "message": "This is a longer message"
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:28:14.040141469Z"
        }
      }
    },
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "message": 1234567890
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:28:14.040144844Z"
        }
      }
    }
  ]
}
Using regular expressions
Painless scripting supports the =~ operator to evaluate regular expressions. The following pipeline flags suspicious IP patterns beginning with 192.168.:
PUT _ingest/pipeline/flag_suspicious_ips
{
  "processors": [
    {
      "set": {
        "field": "alert",
        "value": "suspicious_ip",
        "if": "ctx.ip != null && ctx.ip =~ /^192\.168\.\d+\.\d+$/"
      }
    }
  ]
}
Test the pipeline using the following _simulate request:
POST _ingest/pipeline/flag_suspicious_ips/_simulate
{
  "docs": [
    { "_source": { "ip": "192.168.0.1" } },
    { "_source": { "ip": "10.0.0.1" } }
  ]
}
The first document has an alert field added:
{
  "docs": [
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "alert": "suspicious_ip",
          "ip": "192.168.0.1"
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:32:45.367916428Z"
        }
      }
    },
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "ip": "10.0.0.1"
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:32:45.36793772Z"
        }
      }
    }
  ]
}
Combining fields and null checks
The following pipeline adds a priority field set to high if level is critical and timestamp is provided. The script also ensures that all fields are present and meet specific conditions before proceeding:
PUT _ingest/pipeline/critical_log_handler
{
  "processors": [
    {
      "set": {
        "field": "priority",
        "value": "high",
        "if": "ctx.level != null && ctx.level == 'critical' && ctx.timestamp != null"
      }
    }
  ]
}
Test the pipeline using the following _simulate request:
POST _ingest/pipeline/critical_log_handler/_simulate
{
  "docs": [
    { "_source": { "level": "critical", "timestamp": "2025-04-01T00:00:00Z" } },
    { "_source": { "level": "info", "timestamp": "2025-04-01T00:00:00Z" } },
    { "_source": { "level": "critical" } }
  ]
}
Only the first document has a priority field added:
{
  "docs": [
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "priority": "high",
          "level": "critical",
          "timestamp": "2025-04-01T00:00:00Z"
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:39:25.46840371Z"
        }
      }
    },
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "level": "info",
          "timestamp": "2025-04-01T00:00:00Z"
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:39:25.46843021Z"
        }
      }
    },
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "level": "critical"
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:39:25.468434835Z"
        }
      }
    }
  ]
}
Multi-conditional processing
The following pipeline:
- Adds an 
envfield set toproductionif it doesn’t already exist. - Adds a 
severityfield set tomajorif the value in thestatusfield is greater than or equal to500. - Drops the document if the 
envfield is set totestand themessagefield containsdebug. 
PUT _ingest/pipeline/advanced_log_pipeline
{
  "processors": [
    {
      "set": {
        "field": "env",
        "value": "production",
        "if": "!ctx.containsKey('env')"
      }
    },
    {
      "set": {
        "field": "severity",
        "value": "major",
        "if": "ctx.status != null && ctx.status >= 500"
      }
    },
    {
      "drop": {
        "if": "ctx.env == 'test' && ctx.message?.contains('debug')"
      }
    }
  ]
}
Use the following _simulate request to test the pipeline:
POST _ingest/pipeline/advanced_log_pipeline/_simulate
{
  "docs": [
    {
      "_source": {
        "status": 503,
        "message": "Server unavailable"
      }
    },
    {
      "_source": {
        "env": "test",
        "message": "debug log output"
      }
    },
    {
      "_source": {
        "status": 200,
        "message": "OK"
      }
    }
  ]
}
In the response, note that the first document has the env: production and severity: major fields added. The second document is dropped. The third document has an env: production field added:
{
  "docs": [
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "severity": "major",
          "message": "Server unavailable",
          "env": "production",
          "status": 503
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:51:46.795026554Z"
        }
      }
    },
    null,
    {
      "doc": {
        "_index": "_index",
        "_id": "_id",
        "_source": {
          "message": "OK",
          "env": "production",
          "status": 200
        },
        "_ingest": {
          "timestamp": "2025-04-23T10:51:46.795048304Z"
        }
      }
    }
  ]
}
Null-safe notation
Use null-safe navigation notation (?.) to check whether the field is null. Note that this notation can return null silently; therefore, we recommend first checking whether the returned value is null and then using operations like .contains or ==.
Unsafe syntax:
"if": "ctx.message?.contains('debug')"
If the message field does not exist in the document, this request returns a null_pointer_exception with the message Cannot invoke "Object.getClass()" because "value" is null.
Safe syntax:
"if": "ctx.message != null && ctx.message.contains('debug')"