Register an agent
Introduced 2.13
Use this API to register an agent.
Agents may be of the following types:
- Flow agent
- Conversational flow agent
- Conversational agent
- Plan-execute-reflect agent
For more information about agents, see Agents.
Endpoints
POST /_plugins/_ml/agents/_register
Request body fields
The following table lists the available request fields.
Field | Data type | Required/Optional | Agent type | Description |
---|---|---|---|---|
name | String | Required | All | The agent name. |
type | String | Required | All | The agent type. Valid values are flow , conversational_flow , conversational , and plan_execute_and_reflect . For more information, see Agents. |
description | String | Optional | All | A description of the agent. |
tools | Array | Optional | All | A list of tools for the agent to execute. |
app_type | String | Optional | All | Specifies an optional agent category. You can then perform operations on all agents in the category. For example, you can delete all messages for RAG agents. |
memory.type | String | Optional | conversational_flow , conversational | Specifies where to store the conversational memory. Currently, the only supported type is conversation_index (store the memory in a conversational system index). |
llm.model_id | String | Required | conversational | The model ID of the LLM to which to send questions. |
llm.parameters.response_filter | String | Required | conversational | The pattern for parsing the LLM response. For each LLM, you need to provide the field where the response is located. For example, for the Anthropic Claude model, the response is located in the completion field, so the pattern is $.completion . For OpenAI models, the pattern is $.choices[0].message.content . |
llm.parameters.max_iteration | Integer | Optional | conversational | The maximum number of messages to send to the LLM. Default is 10 . |
parameters | Object | Optional | All | Agent parameters, which may be used to control the max_steps executed by the agent, modify default prompts, and so on. |
parameters.executor_agent_id | Integer | Optional | plan_execute_and_reflect | The plan_execute_and_reflect agent internally uses a conversational agent to execute each step. By default, this executor agent uses the same model as the planning model specified in the llm configuration. To use a different model for executing steps, create a conversational agent using another model and pass the agent ID in this field. This can be useful if you want to use different models for planning and execution. |
parameters.max_steps | Integer | Optional | plan_execute_and_reflect | The maximum number of steps executed by the LLM. Default is 20 . |
parameters.executor_max_iterations | Integer | Optional | plan_execute_and_reflect | The maximum number of messages sent to the LLM by the executor agent. Default is 20 . |
parameters._llm_interface | String | Required | plan_execute_and_reflect , conversational | Specifies how to parse the LLM output when using function calling. Valid values are: - bedrock/converse/claude : Anthropic Claude conversational models hosted on Amazon Bedrock - bedrock/converse/deepseek_r1 : DeepSeek-R1 models hosted on Amazon Bedrock - openai/v1/chat/completions : OpenAI chat completion models hosted on OpenAI. Each interface defines a default response schema and function call parser. |
The tools
array contains a list of tools for the agent. Each tool contains the following fields.
Field | Data type | Required/Optional | Description |
---|---|---|---|
type | String | Required | The tool type. For a list of supported tools, see Tools. |
name | String | Optional | The tool name. The tool name defaults to the type parameter value. If you need to include multiple tools of the same type in an agent, specify different names for the tools. |
description | String | Optional | The tool description. Defaults to a built-in description for the specified type. |
parameters | Object | Optional | The parameters for this tool. The parameters are highly dependent on the tool type. You can find information about specific tool types in Tools. |
attributes.input_schema | Object | Optional | The expected input format for this tool defined as a JSON schema. Used to define the structure the LLM should follow when calling the tool. |
attributes.strict | Boolean | Optional | Whether function calling reliably adheres to the input schema or not. |
Example request: Flow agent
POST /_plugins/_ml/agents/_register
{
"name": "Test_Agent_For_RAG",
"type": "flow",
"description": "this is a test agent",
"tools": [
{
"name": "vector_tool",
"type": "VectorDBTool",
"parameters": {
"model_id": "zBRyYIsBls05QaITo5ex",
"index": "my_test_data",
"embedding_field": "embedding",
"source_field": [
"text"
],
"input": "${parameters.question}"
}
},
{
"type": "MLModelTool",
"description": "A general tool to answer any question",
"parameters": {
"model_id": "NWR9YIsBUysqmzBdifVJ",
"prompt": "\n\nHuman:You are a professional data analyst. You will always answer question based on the given context first. If the answer is not directly shown in the context, you will analyze the data and find the answer. If you don't know the answer, just say don't know. \n\n Context:\n${parameters.vector_tool.output}\n\nHuman:${parameters.question}\n\nAssistant:"
}
}
]
}
Example request: Conversational flow agent
POST /_plugins/_ml/agents/_register
{
"name": "population data analysis agent",
"type": "conversational_flow",
"description": "This is a demo agent for population data analysis",
"app_type": "rag",
"memory": {
"type": "conversation_index"
},
"tools": [
{
"type": "VectorDBTool",
"name": "population_knowledge_base",
"parameters": {
"model_id": "your_text_embedding_model_id",
"index": "test_population_data",
"embedding_field": "population_description_embedding",
"source_field": [
"population_description"
],
"input": "${parameters.question}"
}
},
{
"type": "MLModelTool",
"name": "bedrock_claude_model",
"description": "A general tool to answer any question",
"parameters": {
"model_id": "your_LLM_model_id",
"prompt": """
Human:You are a professional data analysist. You will always answer question based on the given context first. If the answer is not directly shown in the context, you will analyze the data and find the answer. If you don't know the answer, just say don't know.
Context:
${parameters.population_knowledge_base.output:-}
${parameters.chat_history:-}
Human:${parameters.question}
Assistant:"""
}
}
]
}
Example request: Conversational agent
POST /_plugins/_ml/agents/_register
{
"name": "Test_Agent_For_ReAct_ClaudeV2",
"type": "conversational",
"description": "this is a test agent",
"app_type": "my chatbot",
"llm": {
"model_id": "<llm_model_id>",
"parameters": {
"max_iteration": 5,
"stop_when_no_tool_found": true,
"response_filter": "$.completion"
}
},
"memory": {
"type": "conversation_index"
},
"tools": [
{
"type": "VectorDBTool",
"name": "VectorDBTool",
"description": "A tool to search opensearch index with natural language question. If you don't know answer for some question, you should always try to search data with this tool. Action Input: <natural language question>",
"parameters": {
"model_id": "<embedding_model_id>",
"index": "<your_knn_index>",
"embedding_field": "<embedding_filed_name>",
"source_field": [
"<source_filed>"
],
"input": "${parameters.question}"
}
},
{
"type": "ListIndexTool",
"name": "RetrieveIndexMetaTool",
"description": "Use this tool to get OpenSearch index information: (health, status, index, uuid, primary count, replica count, docs.count, docs.deleted, store.size, primary.store.size)."
}
]
}
Example request: Plan-execute-reflect agent
Introduced 3.0
POST /_plugins/_ml/agents/_register
{
"name": "My plan execute and reflect agent",
"type": "plan_execute_and_reflect",
"description": "this is a test agent",
"llm": {
"model_id": "<llm_model_id>",
"parameters": {
"prompt": "${parameters.question}"
}
},
"memory": {
"type": "conversation_index"
},
"parameters": {
"_llm_interface": "<llm_interface>"
},
"tools": [
{
"type": "ListIndexTool"
},
{
"type": "SearchIndexTool"
},
{
"type": "IndexMappingTool"
}
],
"app_type": "os_chat"
}
Example response
OpenSearch responds with an agent ID that you can use to refer to the agent:
{
"agent_id": "bpV_Zo0BRhAwb9PZqGja"
}